首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17253篇
  免费   2079篇
  国内免费   804篇
电工技术   550篇
综合类   843篇
化学工业   7351篇
金属工艺   1166篇
机械仪表   298篇
建筑科学   574篇
矿业工程   245篇
能源动力   1354篇
轻工业   798篇
水利工程   157篇
石油天然气   784篇
武器工业   95篇
无线电   1003篇
一般工业技术   3881篇
冶金工业   648篇
原子能技术   189篇
自动化技术   200篇
  2024年   39篇
  2023年   540篇
  2022年   562篇
  2021年   738篇
  2020年   794篇
  2019年   775篇
  2018年   721篇
  2017年   832篇
  2016年   702篇
  2015年   708篇
  2014年   979篇
  2013年   1196篇
  2012年   1240篇
  2011年   1376篇
  2010年   944篇
  2009年   1052篇
  2008年   844篇
  2007年   1021篇
  2006年   852篇
  2005年   697篇
  2004年   569篇
  2003年   478篇
  2002年   370篇
  2001年   294篇
  2000年   237篇
  1999年   201篇
  1998年   193篇
  1997年   139篇
  1996年   126篇
  1995年   123篇
  1994年   105篇
  1993年   82篇
  1992年   90篇
  1991年   91篇
  1990年   66篇
  1989年   64篇
  1988年   50篇
  1987年   37篇
  1986年   38篇
  1985年   28篇
  1984年   30篇
  1983年   23篇
  1982年   28篇
  1981年   15篇
  1980年   17篇
  1979年   8篇
  1975年   2篇
  1973年   2篇
  1959年   2篇
  1951年   12篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
101.
Energy transduction of dielectric elastomers involves minute electrical and mechanical losses, both of which potentially increase the temperature within the elastomer. Thermal breakdown of dielectric elastomers occur when heat generated therein cannot be balanced by heat loss on the surface, which is more likely to occur in stacked dielectric elastomers. In this article an electro-thermal model of a multilayered dielectric elastomer able to predict the possible number of layers in a stack before thermal breakdown occurs is presented. Simulation results show that point of breakdown is greatly affected by an increase in surrounding temperature and applied electric field. Furthermore, if the stack diameter is large, thermal insulation of the cylindrical surface is a valid approximation. Two different expressions for the electrical conductivity are used, and it is concluded that the Frank-Kamenetskii expression is more conservative in prediction of point of breakdown than the Arrhenius expression, except at high surrounding temperature. © 2018 American Institute of Chemical Engineers AIChE J, 65: 859–864, 2019  相似文献   
102.
In recent years, the expansion of demand for lithium ion batteries has resulted in soaring prices of the constituent resources. From the viewpoint of safety, studies on all-solid-state batteries are actively being carried out. In this study, we succeeded in driving all-solid-state batteries derived from nontoxic oxide glasses at room temperature without requiring scarce resources such as lithium and cobalt. The main structure of the ceramic batteries with a simple structure in which Na2FeP2O7 crystallized glass and β″-alumina solid solution are joined by pressureless cofiring at 550°C. During the crystallization of Na2O-Fe2O3-P2O5 glass, fusion with the β″-alumina solid solution is achieved. Reversible charge and discharge of 80 mAh/g were achieved at room temperature. It is not necessary to apply pressure during cell preparation or the use of the batteries. Furthermore, the strong junction at the cathode and electrolyte interface does not peel off during charge and discharge over a long period of 623 cycles. Ex situ X-ray photoelectron spectroscopy revealed partial Fe4+ induction and a reversible charge and discharge reaction even after overcharging to 9 V. It was demonstrated that Na2FeP2O7 is very stable against overcharging to 9 V.  相似文献   
103.
Solid oxide fuel cell is a promising energy conversion system which converts chemical energy into electrical energy directly. Electrolyte is the key component and determines the working temperature. In this paper,ceria and scandia co-doped zirconia electrolytes sintered from 1300 to 1550 ℃ were chosen as research objects. Scanning electron microscopy, X-ray diffraction and transmission electron microscopy were performed to characterize the ceramic samples. The effects of grain size and grain boundary element segregation on the electrical conductivity were focused. Electrochemical impedance spectroscopy was used to calculate the bulk, grain boundary and specific grain boundary conductivity. Results show that the bulk and grain boundary ionic conductivity increases with the increasing grain size.However, the specific grain boundary conductivity decreases with the increasing grain size. This is explained by the fact that Sc~(3+) is segregated at the grain boundary, which leads to higher oxygen vacancy concentration when sintered at lower temperature.  相似文献   
104.
The aim of this research was to investigate the effect of sintering additive and relatively low-sintering temperature on the thermal conductivity of aluminum nitride nanoceramic. While using nanosized AlN powder and liquid-phase sintering additives, the various sintering processes were performed at temperatures 1400 and 1500°C for several hours. In the analysis methods, thermal conductivity (K) and thermal diffusivity (α) were measured using thermal conductivity analyzer (Hot Disk), scanning electron microscope (SEM) was used to observe the surface morphology of the microstructure, x-ray diffraction analyzer (XRD) to analyze the grain size and crystal structure, Raman spectroscopy (Raman) emission spectrum was analyzed to identify the material microstructure and the densities of AlN specimens were measured by Archimedes method. It was found that the thermal conductivity is related to the densification of nanosize low-temperature sintered material, which can be controlled by additives and sintering temperature. With Y2O3 sintering add, the densification of AlN for low-temperature sintering increased by the factor of ~5% to ~12%, and the thermal conductivity was enhanced by 25%. The relative density observed in this research is about 78%-84%, and the thermal conductivity measured is in the range of 9-14 W/mK.  相似文献   
105.
The enhancement of the thermal conductivity, keeping the electrical insulation, of epoxy thermosets through the addition of pristine and oxidized carbon nanotubes (CNTs) and microplatelets of boron nitride (BN) was studied. Two different epoxy resins were selected: a cycloaliphatic (ECC) epoxy resin and a glycidylic (DGEBA) epoxy resin. The characteristics of the composites prepared were evaluated and compared in terms of thermal, thermomechanical, rheological and electrical properties. Two different dispersion methods were used in the addition of pristine and oxidized CNTs depending on the type of epoxy resin used. Slight changes in the kinetics of the curing reaction were observed in the presence of the fillers. The addition of pristine CNTs led to a greater enhancement of the mechanical properties of the ECC composite whereas the oxidized CNTs presented a greater effect in the DGEBA matrix. The addition of CNTs alone led to a marked decrease of the electrical resistivity of the composites. Nevertheless, in the presence of BN, which is an electrically insulating material, it was possible to increase the proportion of pristine CNTs to 0.25 wt% in the formulation without deterioration of the electrical resistivity. A small but significant synergic effect was determined when both fillers were added together. Improvements of about 750% and 400% in thermal conductivity were obtained in comparison to the neat epoxy matrix for the ECC and DGEBA composites, respectively. © 2019 Society of Chemical Industry  相似文献   
106.
《Ceramics International》2020,46(5):5610-5622
A simple with cost-effective method in the production and fabrication of graphene-based rubber nanocomposites as electrode materials is still remain a global challenge. In this work, we proposed one- and two-step approaches to fabricate an exfoliated graphene oxide (GO) as nanofiller in three different types of rubber latex polymer, namely, low ammonia natural rubber latex (NRL), radiation vulcanized NRL (RVNRL), and epoxy NRL 25 (ENRL 25). The electrical conductivity and capacitive behavior of nanocomposite samples were investigated under a four-point probe and cyclic voltammetry measurements, respectively. Meanwhile, the morphological properties were observed using field emission scanning electron microscopy, energy dispersive X-ray, optical polarization microscope, high-resolution transmission electron microscopy, Fourier-transform infrared spectroscopy, micro-Raman spectroscopy, and X-ray diffraction. The thermal stabilities of the nanocomposites were also investigated by thermogravimetric analysis. Among all, the GO/RVNRL polymer nanocomposite samples performed a better homogeneity with an improved electrical conductivity (~8.6 × 10−4 Scm−1) as compared with the GO/ENRL 25 (~3.1 × 10−4 Scm−1) and GO/NRL (~2.6 × 10−4 Scm−1) polymer nanocomposite samples. In addition, the GO/RVNRL polymer nanocomposite electrodes showed acceptable specific capacitance (5 Fg-1). The successfully fabricated conductive GO-based rubber nanocomposites are suitable for new supercapacitor electrodes.  相似文献   
107.
溶剂萃取法是盐湖提锂的重要工艺方法。采用磷酸三丁酯(TBP)/1-丁基-3-甲基咪唑双三氟甲基磺酰亚胺盐([C4mim][NTf2])离子液体体系对高镁锂比盐湖卤水中的锂进行萃取分离提取实验,对负载有机相的洗涤和反萃过程进行了研究。萃取实验:在TBP与[C4mim][NTf2]体积比为9∶1、相比(有机相与水相的体积比)为2∶1条件下,锂离子与其他离子的分离系数分别为β(锂/钠)=94.70、β(锂/钾)=148.85、β(锂/镁)=131.81。洗涤实验:系统考察了洗涤剂种类及浓度、相比、洗涤次数等因素对杂质离子洗脱率的影响,结果发现氯化锂和盐酸的混合溶液是从负载有机相中洗涤除去杂质离子的有效洗涤剂。洗涤过程适宜条件:洗涤剂中氯化锂浓度为4 mol/L、盐酸浓度为0.5 mol/L,相比为5∶1,洗涤次数为2次。反萃实验:用稀盐酸(1.0 mol/L)对负载有机相进行反萃取,在相比为1∶1条件下,单级反萃率达到97.81%。研究表明,离子液体体系作为一种新型萃取体系,在高镁锂比盐湖卤水中提取锂具有较好的应用前景。  相似文献   
108.
马奕新  金宇  张虎  王娴  唐桂华 《化工学报》2020,71(2):594-601
热管是一种利用工质相变传热,具有传热温差小、热响应速度快、换热量大等优点的传热元件。为研究翅片重力热管的传热性能,实验测试了翅片重力热管与平板重力热管(铝-丙酮工质)的传热性能,比较了其瞬态热响应速率,获得了翅片与平板重力热管在蒸发段不同电功率稳定加热条件下表面温度沿高度方向的变化规律,计算了平板热管的等效热导率,并与铝板测量结果进行了对比。结果表明:重力热管传热速度快、表面均温效果好,热导率随功率的增大先升高后降低,整体上热导率高达纯铝的84~258倍,翅片热管相比于平板热管具有更好的均温性和散热效果,在建筑供暖、车载电池散热、余热利用等领域具有广泛的应用前景。  相似文献   
109.
《Ceramics International》2020,46(8):11508-11514
Nanopowders of holmium zirconate (Ho2Zr2O7) synthesised through carbon neutral sol-gel method were pressed into pellets and individually sintered for 2 h in a single step sintering (SSS) process from 1100 °C to 1500 °C at 100 °C interval and in a two step sintering (TSS) process at (I) −1500 °C for 5 min followed by (II) - 1300 °C for 96 h. Relative density of each of the sintered pellet was determined using the Archimedes’ technique and the theoretical density was calculated from crystal structure data. Grain size was obtained from SEM micrographs using ImageJ. Pellets processed by TSS have been found to be denser (98 %) with less grain growth (1.29 μm) as compared to the pellets processed using SSS process. Ionic conductivity of Ho2Zr2O7 pellets sintered by two different processes was measured using ac impedance spectroscopy technique over the temperature range of 350 °C–750 °C in the frequency range of 100 mHz–100 MHz for both heating and cooling cycles. The temperature dependence of bulk (2.67⨯10−3 Scm−1) and grain boundary (2.50⨯10−3 Scm−1) conductivities of Ho2Zr2O7 prepared by TSS process are greater than those processed by SSS process suggesting the strong influence of processing conditions and grain size. Results of this study, indicates that the TSS is the preferable route for processing the holmium zirconate as it can be sintered to exceptionally high densities at lower temperature, exhibits less grain growth and enhanced ionic conductivity compared with the samples processed by SSS process. Hence, holmium zirconate can be considered as a promising new oxide ion conducting solid electrolyte for intermediate temperature SOFC applications between 350 °C and 750 °C temperature range.  相似文献   
110.
以1-甲基咪唑和氯代正丁烷为原料,合成1-丁基-3-甲基咪唑氯盐离子液体;以醋酸锌[Zn(Ac)2]、硫酸锌(ZnSO4)和氯化锌(ZnCl2)为锌源,在1-丁基-3-甲基咪唑氯盐离子液体和丙氨酸体系中与硝酸铈反应,经水热合成法制备得到Ce掺杂的纳米ZnO。采用扫描电子显微镜(SEM)、紫外-可见光吸收光谱(UV-Vis)、X射线衍射仪(XRD)、X射线光电子能谱分析(XPS)和红外光谱(FT-IR)对产品进行表征。以亚甲基蓝(MB)为目标降解物,采用UV-Vis检测,考察了Ce掺杂的纳米ZnO的光催化活性。研究表明,焙烧温度对光催化的晶体结构和光催化活性产生较大的影响;2%Ce/ZnO、焙烧温度为500℃、催化时间为30 min、亚甲基蓝用量0.05 g、pH值为10时降解率可达99.5%以上。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号